Protean Electric

SiC Inverter for In-Wheel Motor (IWM) Applications

Dr Chao Ji
Power Electronics Research Engineer

5th September 2018
Contents

1. In-Wheel Motor
2. Integrated Inverter Drive
3. SiC Inverter/Demonstrator
Section 1
In-Wheel Motor
Protean Electric has a strong heritage in innovation

- An automotive technology company founded in 2008
- Today we are over 130 employees based in the UK, China and US
- Our focus is the development and validation of ProteanDrive:
 - Electric in-wheel motor drive system
 - Direct drive motor
 - Inverter
 - Friction brake
- Market-ready product Pd18:
 - 4th generation design
 - Comprehensive verification completed
 - Small series manufacturing in Tianjin
 - Volume manufacturing by tier 1 licensees
The conceptual advantages of in-wheel motors are clear

Range & Efficiency: Drive Longer
- In-wheel motors remove efficiency losses associated with gear, differential and CV joints situated around the vehicle

Meaning
- Greater range
- Reduced running costs
- Lower charging frequency

Design Flexibility: Creative Freedom
- In-wheel motors revolutionize car design
- No requirement for existing driveline components means car design is no longer compromised

Meaning
- Flexible vehicle design
- Flexible manufacturing process
- Simpler development of hybrids

Driving Experience: Better Handling
- Individual wheel motors allow torque distribution to different wheels (torque vectoring)

Meaning
- Improved driver experience
- Enhanced stability and control
- Improved ABS/ESP function

Cost Benefits: Production Efficiency
- In-wheel motors with integrated inverters do not require a gear, differential, drive-shafts or external drive electronics

Meaning
- Comparable system cost
- Reduced development cost
- More opportunity for modularity
IWM Design Challenges

• Unsprung Mass
 – Longest standing challenge
 – Independent tests have proved it is no limitation to in-wheel motor technology

• Integration of Friction Brake
 – Packaging a foundation brake within the motor that matches standard vehicle performance

• Thermal Management
 – Cooling multiple electronic subsystems effectively when closely packaged together

• Vehicle Control
 – Individual wheel control achievable in existing vehicle architectures

More details can be found at www.proteanelectric.com
Section 2
Integrated Inverter Drive
ProteanDrive Pd18

- Development in accordance with ISO26262 Functional Safety Standard
- Design lifetime of 300,000km and 15 years with verification through bench and vehicle durability testing
- Designed to exceed, and tested in line with, major automotive manufacturers' EMC standards
ProteanDrive Pd18 Specification

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pd18</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Output Power*</td>
<td>80</td>
<td>kW</td>
</tr>
<tr>
<td>Continuous Output Power*</td>
<td>60</td>
<td>kW</td>
</tr>
<tr>
<td>Peak Torque</td>
<td>1250</td>
<td>Nm</td>
</tr>
<tr>
<td>Continuous Torque</td>
<td>650</td>
<td>Nm</td>
</tr>
<tr>
<td>Motor Dimensions (diameter, axial depth to rear or stator, excluding cable glands)</td>
<td>433, 125</td>
<td>mm</td>
</tr>
<tr>
<td>Motor Mass (including power electronics, excluding bearing, brake and cables)</td>
<td>36</td>
<td>kg</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>1600</td>
<td>rpm</td>
</tr>
<tr>
<td>HV DC Supply Voltage Range (for full performance)</td>
<td>200 to 400</td>
<td>Vdc</td>
</tr>
<tr>
<td>Coolant Inlet Temperature Range (for full performance)</td>
<td>-20 to +50</td>
<td>ºC</td>
</tr>
<tr>
<td>Cooling Fluid</td>
<td>50/50 Water/Glycol</td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature Range (for full performance)</td>
<td>-40 to +90</td>
<td>ºC</td>
</tr>
<tr>
<td>Control Interface (torque demand)</td>
<td>CAN 2.0b</td>
<td></td>
</tr>
<tr>
<td>Ingress Protection Rating</td>
<td>IP6K9K</td>
<td></td>
</tr>
<tr>
<td>Power and Control Electronics</td>
<td>Integrated</td>
<td></td>
</tr>
<tr>
<td>Friction Braking Solution</td>
<td>Integrated</td>
<td></td>
</tr>
</tbody>
</table>
Integrated Inverter Drive

- Modular based design for high volume manufacture
- Fits within a “doughnut” space envelope around bearing
- Only two main electronic parts
 - Custom variable speed drive power module
 - Custom power distribution capacitor ring
- Ultra-high power density of 80 kW

<table>
<thead>
<tr>
<th>DC Bus Voltage</th>
<th>200-430V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>4x 3ph variable speed drive</td>
</tr>
<tr>
<td>Current out</td>
<td>500Arms peak capability</td>
</tr>
<tr>
<td>Power</td>
<td>80kW, 2.8x overload</td>
</tr>
</tbody>
</table>
Custom Power Module

- Each module contains 2 variable speed drive inverters with integrated gate drives, controllers, and sensors
- 650V, 150A IGBT + Diode with PIN-FIN base plate
- Direct water cooling
- Excellent thermal cycling reliability
- Wake on CAN capability & functional safety design
- AEC approved components & extensive use of low profile components
Inverter Loss Assessment

- **Top-left:** balanced switching & conduction losses
- **Bottom-right:** IGBT junction temperature
- **Top-right:** Inverter loss up to 4.6 kW when supplied with 400 Vdc
Si Inverter Loss Map

- Inverter loss map under 320 Vdc with 50/50 water/glycol coolant, at 50°C inlet temperature and 13 L/min flow
IWM System Efficiency

Motoring Efficiency

Braking Efficiency

- Losses presented include all losses from DC electrical supply to wheel:
 - Machine losses / Inverter losses / Friction and windage losses / Bearing losses
- Performance at 400 Vdc with 50/50 water/glycol coolant, at 50°C inlet temperature and 13 litres/minute flow
Section 3
SiC Inverter Option
Wide band-gap Semiconductors Benefits

Benefits of Wide Band-gap Semiconductors (SiC vs. Si)

- **Reduced power loss**
 - 10 x dielectric breakdown field strength
 - SiC devices come with high breakdown voltage and low resistance

- **High temperature operation**
 - 3 x band gap width
 - SiC devices can operate at higher temperatures

- **Fast heat dissipation**
 - 3 x conductivity
 - SiC devices have much less cooling requirements

- **High frequency operation**
 - High breakdown field, high carrier concentration, majority carrier devices

High voltage, low resistance, fast switching behaviour
SiC Semiconductors

- More than 23 manufacturers and still growing!
SiC Inverter with Discrete Devices

- CREE C2M0025120D
- 1200V, 25mΩ, 98A
- Highest current rating for discrete MOSFET

3rd Quadrant operation switch

- CREE C4D40120D
- 1200V, 40A (2 in 1 package)
- Highest current rating for discrete Schottky Diodes
SiC Inverter with Discrete Devices

- Consider one switch position (only 1 MOSFET and 1 SBD)

- When the current is positive, it always flows through the MOSFET channel

- When the current is negative, there are three possible paths:
 - SBD whatever gate voltage is
 - MOSFET channel when gate voltage is ON (3rd Quadrant operation)
 - Body diode when gate voltage is OFF

- Assuming SBD forward voltage is sufficiently small, during dead-time period, the body diode path can be ignored and SBD is the only path

- However, when gate voltage is ON with negative current flowing
 - MOSFET and SBD would dynamically share the negative current
 - This will depend on junction temperatures, current levels and drives etc.
 - Difficult to give an accurate loss calculation

- For the chosen devices, 3rd Q path is more efficient than SBD

- Consider two extreme conditions:
 1. Current flows completely through 3rd Q
 2. Current flows only through SBD (3rd Q blocked)
Inverter Loss Breakdown

The diagram shows the inverter loss breakdown as a function of RMS current per inverter leg (A) and per inverter loss (W). The bars represent different loss components, including MOS conduction, SBD conduction, and switching loss. The graph includes data for MOS cd (3Q blocked), SBD cd (3Q blocked), MOS sw (3Q blocked), MOS cd (3Q enabled), SBD cd (3Q enabled), and MOS sw (3Q enabled).
Loss Comparison

- Low-mid current level: Significant loss reduction with SiC discrete inverter solution
- High current level: Excessive conduction loss, mainly due to the very hot junction ($R_{ds,ON}$)
SiC Power Module

- Novel half bridge module [1] considered for the particularly high current demand
- Much better on-resistance control at high temperature [2], compared to traditional Si MOSFET
- Robust body diode enables a SBD-free design [3], i.e. more SiC chips on the substrate area
- Design considerations: low gate charge requirements, high dv/dt stress, parasitic turn-on etc.
Inverter Loss Assessment

- **Top-left**: switching & conduction loss breakdown
- **Bottom-right**: junction temperatures
- **Top-right**: 4660W vs. 1609W – over 65.5% loss reduction achievable under the same test conditions
SiC Inverter Loss Map

- Inverter loss map under 320 Vdc with 50/50 water/glycol coolant, at 50°C inlet temperature and 13 L/min flow.
Inverter Loss Delta (SiC – Si)

- Inverter loss delta plot (i.e. SiC MOSFET – Si IGBT)
- Performance at 320 Vdc with 50/50 water/glycol coolant, at 50°C inlet temperature and 13 litres/minute flow
IWM System Efficiency with SiC Inverter

- Losses presented include all losses from DC electrical supply to wheel:
 - Machine losses / Simulated SiC inverter losses / Friction and windage losses / Bearing losses
- Performance at 320 Vdc with 50/50 water/glycol coolant, at 50°C inlet temperature and 13 litres/minute flow
SiC Demonstrator

- Laboratory demonstrator developed to assess SiC inverter performance
- Capacitor bank, gate drive, measurement interface and control platform
- Lab test work ongoing & experimental results to be expected in Q4
Lab Testing Results
Conceptual Design

- Conceptual 3D design for 400Vdc, 180 kW IWM drive system
- 12 half bridge modules evenly distributed inside the stator cavity
- High current density design with off-the-shelf modules
Summary

• There are significant advantages to in-wheel motor powertrains that motivate the effort to develop a product

• ProteanDrive equipped with high performance, high power density, highly integrated Si IGBT inverter drive

• Up to 65% loss reduction achievable by adopting SiC MOSFET technology

• Laboratory demonstrator developed & verification tests ongoing

Lohner Porsche, 1900
Thank you